Can tidal breathing with deep inspirations of intact airways create sustained bronchoprotection or bronchodilation?
نویسندگان
چکیده
Fluctuating forces imposed on the airway smooth muscle due to breathing are believed to regulate hyperresponsiveness in vivo. However, recent animal and human isolated airway studies have shown that typical breathing-sized transmural pressure (Ptm) oscillations around a fixed mean are ineffective at mitigating airway constriction. To help understand this discrepancy, we hypothesized that Ptm oscillations capable of producing the same degree of bronchodilation as observed in airway smooth muscle strip studies requires imposition of strains larger than those expected to occur in vivo. First, we applied increasingly larger amplitude Ptm oscillations to a statically constricted airway from a Ptm simulating normal functional residual capacity of 5 cmH2O. Tidal-like oscillations (5-10 cmH2O) imposed 4.9 ± 2.0% strain and resulted in 11.6 ± 4.8% recovery, while Ptm oscillations simulating a deep inspiration at every breath (5-30 cmH2O) achieved 62.9 ± 12.1% recovery. These same Ptm oscillations were then applied starting from a Ptm = 1 cmH2O, resulting in approximately double the strain for each oscillation amplitude. When extreme strains were imposed, we observed full recovery. On combining the two data sets, we found a linear relationship between strain and resultant recovery. Finally, we compared the impact of Ptm oscillations before and after constriction to Ptm oscillations applied only after constriction and found that both loading conditions had a similar effect on narrowing. We conclude that, while sufficiently large strains applied to the airway wall are capable of producing substantial bronchodilation, the Ptm oscillations necessary to achieve those strains are not expected to occur in vivo.
منابع مشابه
Cyclical elongation regulates contractile responses of isolated airways.
Bronchoconstrictor responses are quantitatively different when they are evoked under static conditions and during or after periods of deep inspiration. In vivo, deep inspirations produce bronchodilation and protect the lung from subsequent bronchoconstriction (termed bronchoprotection). These effects may be due in part to dynamic stretch on airways produced by cyclical expansion of airway diame...
متن کاملNonlinear compliance modulates dynamic bronchoconstriction in a multiscale airway model.
The role of breathing and deep inspirations (DI) in modulating airway hyperresponsiveness remains poorly understood. In particular, DIs are potent bronchodilators of constricted airways in nonasthmatic subjects but not in asthmatic subjects. Additionally, length fluctuations (mimicking DIs) have been shown to reduce mean contractile force when applied to airway smooth muscle (ASM) cells and tis...
متن کاملPotent bronchoprotective effect of deep inspiration and its absence in asthma.
In the absence of deep inspirations, healthy individuals develop bronchoconstriction with methacholine inhalation. One hypothesis is that deep inspiration results in bronchodilation. In this study, we tested an alternative hypothesis, that deep inspiration acts as a bronchoprotector. Single-dose methacholine bronchoprovocations were performed after 20 min of deep breath inhibition, in nine heal...
متن کاملResponsiveness of the isolated airway during simulated deep inspirations: effect of airway smooth muscle stiffness and strain.
In vivo, breathing movements, including tidal and deep inspirations (DIs), exert a number of beneficial effects on respiratory system responsiveness in healthy humans that are diminished or lost in asthma, possibly as a result of reduced distension (strain) of airway smooth muscle (ASM). We used bronchial segments from pigs to assess airway responsiveness under static conditions and during simu...
متن کاملAirways dilate to simulated inspiratory but not expiratory manoeuvres.
In a healthy human, deep inspirations produce bronchodilation of contracted airways, which probably occurs due to the transient distension of the airway smooth muscle (ASM). We hypothesised that deep expiratory manoeuvres also produce bronchodilation due to transient airway wall and ASM compression. We used porcine bronchial segments to assess the effects of deep inspirations, and maximal and p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 115 4 شماره
صفحات -
تاریخ انتشار 2013